
www.manaraa.com

Fault-Tolerant Data Structures

Ronald de Wolf∗

CWI Amsterdam

Abstract

We study data structures in the presence of adversarial noise. We want to encode a given
object in a succinct data structure that enables us to efficiently answer specific queries about the
object, even if the data structure has been corrupted by a constant fraction of errors. This model
is the common generalization of (static) data structures and locally decodable error-correcting
codes. The main issue is the tradeoff between the space used by the data structure and the time
(number of probes) needed to answer a query about the encoded object. We prove a number of
upper and lower bounds on various natural fault-tolerant data structure problems. In particular,
we show that the optimal length of fault-tolerant data structures for the Membership problem
(where we want to store subsets of size s from a universe of size n) is closely related to the
optimal length of locally decodable codes for s-bit strings.

1 Introduction

Data structures deal with one of the most fundamental questions of computer science: how can we
store certain objects in a way that is both space-efficient and that enables us to efficiently answer
questions about the object? Thus, for instance, it makes sense to store a set as an ordered list
or as a heap-structure, because this is space-efficient and allows us to determine quickly (in time
logarithmic in the size of the set) whether a certain element is in the set or not.

From a complexity-theoretic point of view, the aim is usually to study the tradeoff between
the two main resources of the data structure: the length/size of the data structure (storage space)
and the efficiency with which we can answer specific queries about the stored object. To make
this precise, we will measure the length of the data structure in bits, and the efficiency of query-
answering in the number of probes, i.e. the number of bit-positions in the data structure that we
need to look at in order to answer a query.

The following definition is adapted from Miltersen’s survey [Mil99].

Definition 1 Let D be a set of data items, Q be a set of queries, A be a set of answers, and
f : D×Q → A. A (p, ε)-data structure for f of length N is a map φ : D → {0, 1}N for which there
exists a randomized algorithm A that makes at most p probes to its oracle and that satisfies

Pr[Aφ(x)(q) = f(x, q)] ≥ 1 − ε,

for every q ∈ Q and x ∈ D.

∗rdewolf@cwi.nl. Partially supported by a Veni grant from the Netherlands Organization for Scientific Research
(NWO), and by the European Commission under the Integrated Project Qubit Applications (QAP) funded by the
IST directorate as Contract Number 015848.

1

www.manaraa.com

Usually we will study the case D ⊆ {0, 1}n and A = {0, 1}. Most standard data structures
taught in undergraduate computer science are deterministic, and hence have error probability
ε = 0. As mentioned, the main complexity issue here is the tradeoff between N and p. Some data
structure problems that we will consider are the following:

• Equality. D = Q = {0, 1}n, and f(x, y) = 1 if x = y, f(x, y) = 0 if x 6= y.

• Membership. D = {x ∈ {0, 1}n : |x| ≤ s}, Q = [n], and f(x, i) = xi. In other words, x
corresponds to a set of size at most s from a universe of size n, and we want to store the set in
a way that easily allows us to make membership queries. This is probably the most basic and
widely-studied data structure problem of them all [FKS84, Yao81, BMRV00, RSV02] (often
this is studied in the cell-probe rather than our bit-probe model). Note that for s = 1 this is
Equality on log n bits.

• Substring. D = {0, 1}n, Q = {y ∈ {0, 1}n : |y| ≤ r}, f(x, y) = xy, where xy is the |y|-bit
substring of x that is indexed by the 1-bits of y (for example, 10100110 = 01).

• Inner product (IPn,r). D = {0, 1}n, Q = {y ∈ {0, 1}n : |y| ≤ r}, and f(x, y) = x · y mod
2. This problem is essentially the hardest Boolean problem where the answer depends on at
most r bits of x (for r = 1 and with additional constraint |x| ≤ s, this is Membership).

More complicated data structure problems such as Rank, Predecessor, Nearest neighbor
have also been studied a lot, but we will not consider them here. Another issue that we will not
deal with in this paper, is the ability to efficiently update a data structure (so-called “dynamic”
data structures, in contrast to the above “static” type). We refer to [Mil99] for more details.

One issue that the above definition ignores, is the issue of noise. Memory and storage devices
are not perfect: the world is full of cosmic rays, small earthquakes, random (quantum) events,
bypassing trams, etc., that can cause a few errors here and there. Another potential source of noise
is transmission of the data structure over some noisy channel. Of course, better hardware can partly
mitigate these effects, but in many situations it is realistic to expect a small fraction of the bits in
the storage space to become corrupted over time. Our goal in this paper is to study fault-tolerant
data structures. These still enable efficient computation of f(x, q) from the stored data structure
φ(x), even if the latter has been corrupted by a constant fraction of errors. In analogy with the
usual setting for error-correcting codes, we will take a pessimistic, adversarial view of errors here:
we want to be able to deal with a constant fraction of errors no matter where they are placed.

Formally, we define fault-tolerant data structures as follows.

Definition 2 Let D be a set of data items, Q be a set of queries, A be a set of answers, and
f : D×Q → A. A (p, δ, ε)-fault-tolerant data structure for f of length N is a map φ : D → {0, 1}N

for which there exists a randomized algorithm A that makes at most p probes to its oracle and that
satisfies

Pr[Ay(q) = f(x, q)] ≥ 1 − ε,

for every q ∈ Q and every y ∈ {0, 1}N with Hamming distance ∆(y, φ(x)) ≤ δN for some x ∈ D.

Definition 1 is the special case of Definition 2 where δ = 0. Note that if δ > 0 then the adversary
can always set the errors in a way that will give the decoder A a non-zero error probability. Hence
the bounded-error setting is the natural setting for fault-tolerant data structures. This contrasts
with the standard noiseless setting, where one usually considers deterministic data structures.

2

www.manaraa.com

A simple example of an efficient fault-tolerant data structure is for Equality: encode x with
a good error-correcting code φ(x). Then N = O(n), and we can decode by one probe: given y,
probe φ(x)j for uniformly chosen j ∈ [N], compare it with φ(y)j , and output 1 iff these two bits are
equal. If up to a δ-fraction of the bits in φ(x) are corrupted, then we will give the correct answer
with probability 1− δ in the case x = y. If the distance between any two codewords is close to N/2
(which is true for instance for a random linear code), then we will give the correct answer with
probability about 1/2 − δ in the case x 6= y. These two probabilities can be balanced to 2-sided
error ε ≈ 1/3 + δ. The error can be reduced further by allowing more than one probe.

Fault-tolerant data structures not only generalize the standard (static) data structures (Defini-
tion 1), but they also generalize locally decodable codes. These are defined as follows:

Definition 3 A (p, δ, ε)-locally decodable code (LDC) of length N is a map φ : {0, 1}n → {0, 1}N

for which there exists a randomized algorithm A that makes at most p probes to its oracle and that
satisfies

Pr[Ay(i) = xi] ≥ 1 − ε,

for every y ∈ {0, 1}N with Hamming distance ∆(y, φ(x)) ≤ δN for some x ∈ {0, 1}n.

Note that a (p, δ, ε)-fault-tolerant data structure for Membership with s = n is exactly a
(p, δ, ε)-locally decodable code. Much work has been done on LDCs, but their length-vs-probes
tradeoff is still largely unknown for p ≥ 3. We refer to [Tre04] and the references therein.

1.1 Our results

Despite the fact that our fault-tolerant data structures appear to be a very natural common gen-
eralization of both standard data structures and locally decodable codes, to our knowledge they
have not been studied before (there has been some related work in different models, see below). In
this paper we present a number of initial results that show that the model has some merit.

1.1.1 Membership

The most basic data structure problem is probably the Membership problem. Fortunately, the
main positive result we managed to prove for fault-tolerant data structures applies to this problem.

Fix some number of probes p, noise level δ, and allowed error probability ε, and consider the
minimal length of p-probe fault-tolerant data structures for s-out-of-n Membership. Let us call
this minimal length MEM(p, s, n). A first observation is that such a data structure is actually a
locally decodable code for s bits: just restrict attention to n-bit strings whose last n − s bits are
all 0. Hence, with LDC(p, s) denoting the minimal length among all p-probe LDCs that encode s
bits (for our fixed ε, δ), we immediately get the lower bound

LDC(p, s) ≤ MEM(p, s, n).

This bound is close to optimal if s ≈ n. Another trivial lower bound comes from the observation
that our data structure for Membership is a map with domain of size B(n, s) :=

∑s
i=0

(n
i

)

and
range of size 2N that has to be injective. Hence

Ω(s log(n/s)) ≤ log B(n, s) ≤ MEM(p, s, n).

3

www.manaraa.com

What about upper bounds? Something that one can always do to construct fault-tolerant data
structures for any problem, is to take the optimal non-fault-tolerant p1-probe construction and
encode it with a p2-probe LDC. If the error probability of the LDC is much smaller than 1/p1, then
we can just run the decoder for the non-fault-tolerant structure, replacing each of its p1 probes by p2

probes to the LDC. This gives a fault-tolerant data structure with a total of p = p1p2 probes. In the
case of Membership, the optimal non-fault-tolerant data structure of Buhrman et al. [BMRV00]
uses only 1 probe and O(s log n) bits. Encoding this with the best possible p-probe LDC gives
fault-tolerant data structures for Membership of length LDC(p,O(s log n)). For instance for p = 2
we can use the Hadamard code for s bits1, giving upper bound MEM(2, s, n) ≤ 2O(s log n).

Our main positive result in Section 2 says that something much better is possible—the max of
the above two lower bounds is not far from optimal. Slightly simplifying2, we prove

MEM(p, s, n) ≤ O(LDC(p, 1000s) log n).

In other words, if we have a decent p-probe LDC for encoding O(s)-bit strings, then we can
use this to fault-tolerantly encode sets of size s from a much larger universe [n], at the expense
of blowing up our data structure by only a factor of log n. For instance, for p = 2 probes we
get MEM(2, s, n) ≤ 2O(s) log n from the Hadamard code, which is much better than the earlier

2O(s log n). For p = 3 probes, we get MEM(3, s, n) ≤ 2O(s1/t) log n for any Mersenne prime 2t − 1
from Yekhanin’s recent 3-probe LDC [Yek07].

1.1.2 Inner product

In Section 3 we analyze the inner product problem, where we are encoding x ∈ {0, 1}n and want
to be able to compute the dot product x · y (mod 2), for any y ∈ {0, 1}n of weight at most r.

We first study the non-fault-tolerant setting. Clearly, a trivial 1-probe data structure is to
store the answers to all B(n, r) possible queries separately. In Section 3.1 we use a discrepancy
argument from communication complexity to prove a lower bound of about B(n, r)1/p on the length
of p-probe data structures. This shows that the trivial solution is essentially optimal if p = 1.

We also construct various p-probe fault-tolerant data structures for inner product. For small p
and large r, their length is not much worse than the best non-fault-tolerant structures. The upshot
is that inner product is a problem where data structures can sometimes be made fault-tolerant at
little extra cost compared to the non-fault-tolerant case—admittedly, this is mostly because the
non-fault-tolerant solutions for IPn,r are already very expensive in terms of their length.

1.2 Related work

Much work has of course been done on fault-tolerant data structures for the Membership prob-
lem without constraints on the set size (a.k.a. general locally decodable codes). However, to our
knowledge, the general fault-tolerant version of Membership or of other possible data structure
problems has not been studier before. Using the connection between information-theoretical private

1The Hadamard code of x ∈ {0, 1}s is the code of length 2s obtained by concatenating the bits x · y (mod 2) for
all y ∈ {0, 1}s. It can be decoded by two probes, since for every y ∈ {0, 1}s we have (x · y) ⊕ (x · (y ⊕ ei)) = xi.
Picking y at random, decoding from a δ-corrupted codeword will be correct with probability at least 1− 2δ, because
both probes y and y ⊕ ei are individually random and hence probe a corrupted entry with probability at most δ.
This exponential length is optimal for 2-probe LDCs [KW04].

2Our actual result, Theorem 2, is a bit dirtier, with some deterioration in the error and noise parameters.

4

www.manaraa.com

information retrieval and locally decodable codes [KT00], one may derive some fault-tolerant data
structures from the PIR results of [CIK+01]. However, the resulting structures seem fairly weak.

An alternative model of fault-tolerant data structures is the “faulty-memory RAM model”,
introduced by Finocchi and Italiano [FI04]. In this model, one assumes there are O(1) incorruptible
memory cells available. This is justified by the fact that CPU registers are much more robust than
other kinds of memory. On the other hand, all other memory cells can be faulty—including the
ones used by the algorithm that is answering queries (something our model does not consider).
The model assumes an upper bound δ on the number of errors. NB: here δ is the total number of
errors, not a fraction as in our earlier definitions.

Finocchi, Grandoni, and Italiano described essentially optimal resilient algorithms for sorting
that work in O(n log n + δ2) time with δ up to about

√
n; and for searching in Θ(log n + δ) time.

Jørgenson, Moruz, and Mølhave [JMM07] constructed a resilient priority queue that uses an optimal
O(n) space to store n elements, and allows insertion and deletion in amortized time O(log n + δ).
This interesting model allows for more efficient data structures than the model proposed here, but
its disadvantages are also clear: it assumes a small number of incorruptible cells, which may not
be available in many practical situations (for instance when the whole data structure is stored on
a hard disk), and the constructions mentioned above cannot deal well with a constant noise rate.

Comment on terminology. The terminologies used in the data-structure and LDC-literature
conflict at various points, and we needed to reconcile them somehow. Our choice is as follows. We
reserve the term “query” for the question q one asks about the encoded data x, while accesses to
bits of the data structure are called “probes” (in contrast, these are usually called “queries” in the
LDC-literature). The number of probes is denoted by p. We use n for the number of bits of the
data item x (in contrast with the literature about Membership, which mostly uses m for the size
of the universe and n for the size of the set). We use N for the length of the data structure (while
the LDC-literature mostly uses m, except for Yekhanin [Yek07] who uses N as we do). We use
the term “decoder” for the algorithm A. Another thing is that ε is sometimes used as the error
probability (in which case one wants ε ≈ 0), and sometimes as the bias away from 1/2 (in which
case one wants ε ≈ 1/2). We use the former.

2 The Membership problem

2.1 Noiseless case: the BMRV data structure for Membership

Our fault-tolerant data structures for Membership rely heavily on the construction of Buhrman
et al. [BMRV00], whose relevant properties we sketch here. Their structure is obtained using the
probabilistic method. Explicit but slightly less efficient structures were subsequently given by
Ta-Shma [TS02].

The BMRV-structure maps x ∈ {0, 1}n (of weight ≤ s) to a string y := y(x) ∈ {0, 1}n′

of length
n′ = 100

ε2 s log n that can be decoded with one probe if δ = 0. More precisely, for every i ∈ [n] there
is a set Si ⊆ [n′] of size Si = log(n)/ε such that for every x of weight ≤ s:

Pr
j∈Si

[yj = xi] ≥ 1 − ε, (1)

where the probability is taken over a uniform index j ∈ Si. For fixed ε, the length n′ = O(s log n)
of the BMRV-structure is optimal up to a constant factor, because clearly log

(

n
s

)

is a lower bound.

5

www.manaraa.com

2.2 Noisy case: 1 probe

For the noiseless case, the BMRV data structure has information-theoretically optimal length
O(s log n) and decodes with the minimal number of probes (one). This can also be achieved in
the fault-tolerant case if s = 1: then we just have the Equality problem, for which see the remark
following Definition 2. For larger s, one can observe that the BMRV-structure still works with high
probability if δ ≪ 1/s: in that case the total number of errors is δn′ ≪ log n, so for each i, most
bits in the Θ(log n)-set Si are uncorrupted.

Theorem 1 (BMRV) There exist (1,Ω(1/s), 1/4)-fault-tolerant data structures for Membership
of length N = O(s log n).

This only works if δ ≪ 1/s, which is actually close to optimal, as follows. An s-bit LDC
can be embedded in a fault-tolerant data structure for Membership, hence it follows from Katz-
Trevisan’s [KT00, Theorem 3] that there are no 1-probe fault-tolerant data structures for Mem-
bership if s > 1/(δ(1 − H(ε))).

In sum, there are one-probe fault-tolerant data structures for Membership of information-
theoretically optimal length if δ ≪ 1/s. In contrast, if δ ≫ 1/s then there are no one-probe
fault-tolerant data structures at all, not even of exponential length.

2.3 Noisy case: p > 1 probes

As we argued in the introduction, for fixed ε and δ there is an easy lower bound on the length N
of p-probe fault-tolerant data structures for s-out-of-n Membership:

N ≥ max

(

LDC(p, s), log
s
∑

i=0

(

n

i

)

)

.

Our nearly matching upper bound uses the ε-error data structure of [BMRV00] for some small
fixed ε. A simple way to obtain a p-probe fault-tolerant data structure is just to encode their
O(s log n)-bit string y with the optimal p-probe LDC (with error ε′, say), which gives length
LDC(p,O(s log n)). The one probe to y is replaced by p probes to the LDC. By the union bound,
the error probability of the overall construction is at most ε + ε′. This, however, achieves more
than we need: this structure enables us to recover yj for every j, whereas it would suffice if we were
able to recover yj for most j ∈ Si.

Definition of the data structure and decoder. To construct a shorter fault-tolerant data
structure, we proceed as follows. Let δ be a small constant (e.g. 1/10000); this is the noise level we
want our final data structure for Membership to protect against. Consider the BMRV-structure
for s-out-of-n Membership, with error probability at most 1/10. Then n′ = 10000s log n is its
length, and b = 10 log n is the size of each of the sets Si. Apply now a random permutation π to
y (we show below that π can be fixed to a specific permutation). View the resulting n′-bit string
as made up of b = 10 log n consecutive blocks of 1000s bits each. We encode each block with the
optimal (p, 100δ, 1/100)-LDC that encodes 1000s bits. Let ℓ be the length of this LDC. This gives
overall length

N = 10ℓ log n.

6

www.manaraa.com

The decoding procedure is as follows. Randomly choose a k ∈ [b]. This picks out one of the blocks.
If this kth block contains exactly one j ∈ Si then recover yj from the (possibly corrupted) LDC
for that block, using the p-probe LDC-decoder, and output yj. If the kth block contains 0 or more
than 1 elements from Si, then output a uniformly random bit.

Analysis. Our goal below is to show that we can fix the permutation π such that for at least
n/20 of the indices i ∈ [n], this procedure has good probability of correctly decoding xi (for all x of
weight ≤ s). The intuition is as follows. Thanks to the random permutation and the fact that |Si|
equals the number of blocks, the expected intersection between Si and a block is exactly 1. Hence
for many i ∈ [n], many blocks will contain exactly one index j ∈ Si. Moreover, for most blocks,
their LDC-encoding won’t have too many errors, hence we can recover yj using the LDC-decoder
for that block. Since yj = xi for 90% of the j ∈ Si, we usually recover xi.

To make this precise, call k ∈ [b] “good” for i if block k contains exactly one j ∈ Si, and let Xik

be the indicator random variable for this event. Call i ∈ [n] “good” if at least b/4 of the blocks
are good for i (i.e.

∑

k∈[b] Xik ≥ b/4), and let Xi be the indicator random variable for this event.
The expected value (over uniformly random π) of each Xik is the probability that if we randomly
place b balls into ab positions (a is the block-size 1000s), then there is exactly one ball among the
a positions of the first block, and the other b − 1 balls are in the last ab − a positions. This is

a
(

ab−a
b−1

)

(

ab
b

) =
(ab − b)(ab − b − 1) · · · (ab − b − a + 2)

(ab − 1)(ab − 2) · · · (ab − a + 1)
≥
(

ab − b − a + 2

ab − a + 1

)a−1

≥
(

1 − 1

a − 1

)a−1

.

The righthand side goes to 1/e ≈ 0.37 with large a, so we can safely lower bound it by 3/10. Then,
using linearity of expectation:

3bn

10
≤ Exp

∑

i∈[n],k∈[b]

Xik

 ≤ b · Exp

[

∑

i

Xi

]

+
b

4

(

n − Exp

[

∑

i

Xi

])

,

which implies

Exp

[

n
∑

i=1

Xi

]

≥ n

20
.

Hence we can fix one permutation π such that at least n/20 of the indices i are good.
For every index i, at least 90% of all j ∈ Si satisfy yj = xi. Hence for a good index i, with

probability at least 1/4−1/10 we will pick a k such that the kth block is good for i and the unique
j ∈ Si in the kth block satisfies yj = xi. By Markov’s inequality, the probability that the block
that we picked has more than a 100δ-fraction of errors, is less than 1/100. If the fraction of errors
is at most 100δ, then our LDC-decoder recovers the relevant bit yj with probability 99/100. Hence
the overall probability of outputting the correct value xi is at least

3

4
· 1

2
+

(

1

4
− 1

10
− 1

100

)

· 99

100
>

51

100
.

We end up with a fault-tolerant data structure for Membership for a universe of size n/20 instead
of n elements, put we can fix this by starting with the BMRV-structure for 20n bits.

We summarize this construction in a theorem:

7

www.manaraa.com

Theorem 2 If there exists a (p, 100δ, 1/100)-LDC of length ℓ that encodes 1000s bits, then there
exists a (p, δ, 49/100)-fault tolerant data structure of length O(ℓ log n) for the s-out-of-n Member-
ship problem.

The error and noise parameters of this new structure are not great, but they can be improved
by more careful analysis. We here sketch a better solution without giving all technical details.
Suppose we change the decoding procedure for xi as follows: pick j ∈ Si uniformly at random,
decode yj from the LDC of the block where yj sits, and output the result. There are three sources
of error here: (1) the BMRV-structure makes a mistake (i.e., j happens to be such that yj 6= xi),
(2) the LDC-decoder fails because there is too much noise on the LDC that we are decoding from,
(3) the LDC-decoder fails even though there is not too much noise on it. The 2nd kind is hardest
to analyze. The adversary will do best if he puts just a bit more than the tolerable noise-level on
the encodings of blocks that contain the most j ∈ Si, thereby “destroying” those codes.

For a random permutation, we expect about b/(e ·m!) of the b blocks contain m elements of Si.
Hence about 1/65 of all blocks have 4 or more elements of Si. If the LDC is designed to protect
against a 65δ-fraction of errors within one encoded block, then with overall error-fraction δ, the
adversary has exactly enough noise to “destroy” all blocks containing 4 or more elements of Si.
The probability that our uniformly random j sits in such a “destroyed” block is about

∑

m≥4

m

b

b

e · m!
=

1

e

(

1

3!
+

1

4!
+ · · ·

)

≈ 0.08.

Hence if we set the error of the BMRV-structure to 1/10 and the error of the LDC to 1/100 (as
above), then the total error probability for decoding xi is less than 0.2 (of course we need to show
that we can fix a π such that good decoding occurs for a good fraction of all i ∈ [n]). Another
parameter that may be adjusted is the block size, which we here took to be 1000s. Clearly, different
tradeoffs between codelength, tolerable noise-level, and error probability are possible.

3 The Inner product problem

3.1 Noiseless case

Here we show bounds for Inner product, first for the case where there is no noise (δ = 0).

Upper bound. Consider all strings z of weight at most ⌈r/p⌉. The number of such z is

B(n, ⌈r/p⌉) =
∑⌈r/p⌉

i=0

(n
i

)

≤ (epn/r)r/p. We define our code by writing down, for all z in lexi-
cographic order, the inner product x · z mod 2. If we want to recover the inner product x · y for
some y of weight at most r, we write y = z1 + · · ·+ zp for zj ’s of weight at most ⌈r/p⌉ and recover
x · zj for each j ∈ [p], using one probe for each. Summing the results of the p probes gives x · y
(mod 2). In particular, for p = 1 probes, the length is B(n, r).

Lower bound. To prove a nearly-matching lower bound, we use Miltersen’s technique of relating
a data structure to a two-party communication game [Mil94]. We refer to [KN97] for a general
introduction to communication complexity. Suppose Alice gets string x ∈ {0, 1}n, Bob gets string
y ∈ {0, 1}n of weight ≤ r, and they need to compute x · y (mod 2) with bounded error probability
and minimal communication between them. Call this communication problem IPn,r. Let B(n, r) =

8

www.manaraa.com

∑r
i=0

(n
i

)

be the size of Q, i.e. the number of possible queries y. The proof of our communication
complexity lower bound below uses a fairly standard discrepancy argument, but we have not found
this specific result anywhere. For completeness we include a proof in Appendix A.

Theorem 3 Every communication protocol for IPn,r with worst-case (or even average-case) success
probability ≥ 1/2 + β needs at least log(B(n, r)) − 2 log(1/2β) bits of communication.

Armed with this communication complexity bound we can lower bound data structure length:

Theorem 4 Every (p, ε)-data structure for IPn,r needs space N ≥ 1

2
2(log(B(n,r))−2 log(1/(1−2ε))−1)/p

Proof. We will use the data structure to obtain a communication protocol for IPn,r that uses
p(log(N) + 1) + 1 bits of communication, and then invoke Theorem 3 to obtain the lower bound.

Alice holds x, and hence φ(x), while Bob simulates the decoder. Bob starts the communication.
He picks his first probe to the data structure and sends it over in log N bits. Alice sends back
the 1-bit answer. After p rounds of communication, all p probes have been simulated and Bob
can give the same output as the decoder would have given. Bob’s output will be the last bit of
the communication. Theorem 3 now implies p(log(N) + 1) + 1 ≥ log(B(n, r)) − 2 log(1/(1 − 2ε)).
Rearranging gives the bound on N . 2

For fixed ε, the lower bound is N = Ω
(

B(n, r)1/p
)

. This is Ω((n/r)r/p), which (at least for small

p) is not too far from the upper bound of approximately (epn/r)r/p mentioned above. Note that in
general our bound on N is superpolynomial in n whenever p = o(r). For instance, when r = αn for
some constant α ∈ (0, 1/2) then N = Ω(2nH(α)/p), which is non-trivial whenever p = o(n). Finally,
note that the proof technique also works if Alice’s messages are longer than 1 bit (i.e. if the code
is over a larger-than-binary alphabet).

3.2 Noisy case

3.2.1 Constructions for Substring

One can easily construct fault-tolerant data structures for Substring, which also suffice for Inner
product. Note that since we are recovering r bits, and each probe gives at most one bit of
information, by information theory we need at least about r probes to the data structure.3 Our
solutions below will use O(r log r) probes. View x as a concatenation x = x(1) . . . x(r) of r strings
of n/r bits each (we ignore rounding for simplicity), and define φ(x) as the concatenation of the
Hadamard codes of these r pieces. Then φ(x) has length N = r · 2n/r.

If δ ≥ 1/4r then the adversary could corrupt one of the r Hadamard codes by 25% noise,
ensuring that some of the bits of x are irrevocably lost even when we allow the full N probes.
However, if δ ≪ 1/r then we can recover each bit xi with small constant error probability by
2 probes in the Hadamard code where i sits, and with error probability ≪ 1/r using O(log r)
probes. Hence we can compute f(x, y) = xy with error close to 0 using p = O(r log r) probes (or
with 2r probes if δ ≪ 1/r2).4 This also implies that any data structure problem where f(x, q)
depends on at most some fixed constant r bits of x, has a fault-tolerant data structure of length

3d/(log(N) + 1) probes in the case of quantum decoders.
4It follows from Buhrman et al. [BNRW07] that if we allow a quantum decoder, the factor of log r is not needed.

9

www.manaraa.com

N = r · 2n/r, p = O(r log r), and that works if δ ≪ 1/r. Alternatively, we can take Yekhanin’s

3-probe LDC [Yek07], of length N ≈ 2n1/t
for every Mersenne prime 2t − 1, and just decode each

of the r bits separately. Using O(log r) probes to recover a bit with error probability ≪ 1/r, we
recover the r-bit string xy using p = O(r log r) probes even if δ is a constant independent of r.

3.2.2 Constructions for Inner product

Going through the proof of Yekhanin’s construction, it is easy to see that it allows us to compute the
parity of any set of r bits from x using at most 3r probes with error ε, if the noise rate δ is at most
ε/(3r) (just add the results of the 3 probes one would make for each bit in the parity). To get fault-
tolerant data structures even for small constant p (independent of r), we can adapt the polynomial
schemes from [BIK05] to get the following theorem. The details are given in Appendix B.

Theorem 5 For every p ≥ 2, there exists a (p, δ, pδ)-fault-tolerant data structure for IPn,r of length

N ≤ p · 2r(p−1)2n1/(p−1)
.

The p = 2 case of this construction is essentially the Hadamard code. The Hadamard code, of
length 2n, actually allows us to compute x · y (mod 2) for any y ∈ {0, 1}n of our choice, with 2
probes and error probability at most 2δ (just probe r and y⊕r for uniformly random r and observe
that (x ·r)⊕ (x · (r⊕y)) = x ·y). Note that for r = Θ(n) and p = O(1), even non-fault-tolerant data
structures need length 2Θ(n) (Theorem 4). This is an example where fault-tolerant data structures
are not significantly more efficient than the regular, non-fault-tolerant kind.

4 Future work

Many questions are opened up by our model of fault-tolerant data structures. We mention a few:

• There are plenty of other natural data structure problems, such as Rank, Predecessor,
versions of Nearest neighbor etc. [Mil99]. What about the length-vs-probes tradeoffs for
their fault-tolerant versions? The obvious approach is to put the best known LDC on top of
the best known non-fault-tolerant data structures. This is not always optimal, though—for
instance in the case of Membership one can do significantly better, as we showed here.

• It is often natural to assume that a memory cell contains not a bit, but some number from,
say, a polynomial-size universe. This is called the cell-probe model, in contrast to the bit-probe
model we considered here [Mil99]. Probing a cell gives O(log n) bits at the same time, which
can significantly improve the length-vs-probes tradeoff.

• What about dynamic data structures, which allow efficient updates as well as efficient queries
to the encoded object?

• Zvi Lotker suggested to me the following connection with distributed computing. Suppose
the data structure is distributed over N processors, each holding one bit. Interpreted in
this setting, a fault-tolerant data structure allows honest parties to answer queries about the
encoded object while communicating with at most p other processors. The answer will be
correct with probability 1−ε, even if up to a δ-fraction of the N processors are faulty or even
malicious (the querier need not know where the faulty/malicious sites are).

10

www.manaraa.com

Acknowledgments

Thanks to Nitin Saxena for many useful discussions, to Harry Buhrman for discussions about [BMRV00],
to Zvi Lotker for the connection with distributed computation mentioned in Section 4, to Peter
Bro Miltersen for a pointer to [JMM07] and the faulty-memory RAM model, and to Gabriel Moruz
for sending me a copy of that paper.

References

[BIK05] A. Beimel, Y. Ishai, and E. Kushilevitz. General constructions for information-
theoretical Private Information Retrieval. Journal of Computer and System Sciences,
72(2):247–281, 2005.

[BMRV00] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors
optimal? SIAM Journal on Computing, 31(6):1723–1744, 2000. Earlier version in
STOC’00.

[BNRW07] H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust polynomials and quantum
algorithms. Theory of Computing Systems, 40(4):379–395, 2007. Special issue on STACS
2005. quant-ph/0309220.

[CIK+01] R. Canetti, Y. Ishai, R. Kumar, M. Reiter, R. Rubinfeld, and R. Wright. Selective
private function evaluation with applications to private statistics. In Proceedings of
20th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
293–304, 2001.

[FI04] I. Finocchi and G. Italiano. Sorting and searching in the presence of memory faults
(without redundancy). In Proceedings of 36th ACM STOC, pages 101–110, 2004.

[FKS84] M. Fredman, M. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst
case access time. Journal of the ACM, 31(3):538–544, 1984.

[JMM07] A. G. Jørgenson, G. Moruz, and T. Mølhave. Resilient priority queues. In Proceedings
of 10th International Workshop on Algorithms and Data Structures (WADS), volume
4619 of Lecture Notes in Computer Science, 2007.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

[KT00] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of 32nd ACM STOC, pages 80–86, 2000.

[KW04] I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. Journal of Computer and System Sciences, 69(3):395–
420, 2004. Special issue on STOC’03. quant-ph/0208062.

[Mil94] P. B. Miltersen. Lower bounds for Union-Split-Find related problems on random access
machines. In Proceedings of 26th ACM STOC, pages 625–634, 1994.

11

www.manaraa.com

[Mil99] P. B. Miltersen. Cell probe complexity - a survey. Invited paper at Advances in Data
Structures workshop. Available at Miltersen’s homepage, 1999.

[RSV02] J. Radhakrishnan, P. Sen, and S. Venkatesh. The quantum complexity of set member-
ship. Algorithmica, 34(4):462–479, 2002. Earlier version in FOCS’00. quant-ph/0007021.

[Tre04] L. Trevisan. Some applications of coding theory in computational complexity. Quaderni
di Matematica, 13:347–424, 2004.

[TS02] A. Ta-Shma. Storing information with extractors. Information Processing Letters,
83(5):267–274, 2002.

[Yao77] A. C-C. Yao. Probabilistic computations: Toward a unified measure of complexity. In
Proceedings of 18th IEEE FOCS, pages 222–227, 1977.

[Yao81] A. C-C. Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628, 1981.

[Yek07] S. Yekhanin. Towards 3-query locally decodable codes of subexponential length. In
Proceedings of 39th ACM STOC, pages 266–274, 2007.

A Proof of Theorem 3

Let µ be the uniform input distribution: each x has probability 1/2n and each y of weight ≤ r has
probability 1/B(n, r). We show a lower bound on the communication c of deterministic protocols
that compute IPn,r with µ-probability at least 1/2+β. By Yao’s principle [Yao77], this lower bound
then also applies to randomized protocols.

Consider a deterministic c-bit protocol. Assume the last bit communicated is the output bit. It
is well-known that this partitions the input space into rectangles R1, . . . , R2c , where Ri = Ai ×Bi,
and the protocol gives the same output bit ai for each (x, y) ∈ Ri.

5 The discrepancy of rectangle
R = A × B under µ is the difference between the weight of the 0s and the 1s in that rectangle:

δµ(R) =
∣

∣µ(R ∩ IP−1
n,r(1)) − µ(R ∩ IP−1

n,r(0))
∣

∣

We can show for every rectangle that its discrepancy is not very large:

Lemma 1 δµ(R) ≤
√

|R|√
2nB(n, r)

.

Proof. Let M be the 2n ×B(n, r) matrix whose (x, y)-entry is (−1)IPn,r(x,y) = (−1)x·y. It is easy
to see that MT M = 2nI, where I is the B(n, r) × B(n, r) identity matrix. This implies, for any
v ∈ R

B(n,r)

‖ Mv ‖2 = (Mv)T · (Mv) = vT MT Mv = 2nvT v = 2n‖ v ‖2.

Let R = A × B, vA ∈ {0, 1}2n
and vB ∈ {0, 1}B(n,r) be the characteristic (column) vectors of

the sets A and B. Note that ‖ vA ‖ =
√

|A| and ‖ vB ‖ =
√

|B|. The sum of M -entries in R is
∑

a∈A,b∈B Mab = vT
AMvB. We can bound this using Cauchy-Schwarz:

|vT
AMvB | ≤ ‖ vA ‖ · ‖ MvB ‖ = ‖ vA ‖ ·

√
2n‖ vB ‖ =

√

|A| · |B| · 2n.

5[KN97, Section 1.2]. The number of rectangles may be smaller than 2c, but we can always add some empty
rectangles.

12

www.manaraa.com

Observing that δµ(R) = |vT
AMvB |/(2nB(n, r)) and |R| = |A| · |B| concludes the proof. 2

Define the success and failure probabilities (under µ) of the protocol as

Ps =

2c
∑

i=1

µ(Ri ∩ IP−1
n,r(ai)) and Pf =

2c
∑

i=1

µ(Ri ∩ IP−1
n,r(1 − ai))

Then

2β ≤ Ps − Pf

=
∑

i

µ(Ri ∩ IP−1
n,r(ai)) − µ(Ri ∩ IP−1

n,r(1 − ai))

≤
∑

i

∣

∣µ(Ri ∩ IP−1
n,r(ai)) − µ(Ri ∩ IP−1

n,r(1 − ai))
∣

∣

=
∑

i

δµ(Ri)

≤
∑

i

√

|Ri|√
2nB(n, r)

≤
√

2c
√
∑

i |Ri|√
2nB(n, r)

=
√

2c/B(n, r),

where the last inequality is Cauchy-Schwarz and the last equality holds because
∑

i |Ri| is the total
number of inputs, which is 2nB(n, r).

Rearranging gives 2c ≥ (2β)2B(n, r), hence c ≥ log(B(n, r)) − 2 log(1/2β).

B Proof of Theorem 5

Here our goal is to construct p-probe fault-tolerant data structures for the inner product problem.
Let d be an integer to be determined later. Pick m = ⌈dn1/d⌉. Then

(m
d

)

≥ n, so there exist n
distinct sets S1, . . . , Sn ⊆ [m], each of size d. For each x ∈ {0, 1}n, define an m-variate polynomial
px of degree d over F2 by

px(z1, . . . , zm) =
n
∑

i=1

xi

∏

j∈Si

zj .

Note that if we identify Si with its m-bit characteristic vector, then px(Si) = xi. For z(1), . . . , z(r) ∈
{0, 1}m, define an rm-variate polynomial px,r over F2 by

px,r(z
(1), . . . , z(r)) =

r
∑

j=1

px(z(j)).

This polynomial px,r(z) has rm variables, degree d, and allows us to evaluate parities of any set of
r of the variables of x: if y ∈ {0, 1}n (of weight r) has its 1-bits at positions i1, . . . , ir, then

px,r(Si1 , . . . , Sir) =

r
∑

j=1

xij = x · y (mod 2).

13

www.manaraa.com

To construct a fault-tolerant data structure for IPn,r, it thus suffices to give a structure that enables
us to evaluate px,r at any point w of our choice.6

Let w ∈ {0, 1}rm. Suppose we “secret-share” this into p pieces w(1), . . . , w(p) ∈ {0, 1}rm which
are uniformly random subject to the constraint w = w(1) + · · ·+w(p). Now consider the prm-variate
polynomial qx,r defined by

qx,r(w
(1), . . . , w(p)) = px,r(w

(1) + · · · + w(p)).

Each monomial M in this polynomial has at most d variables. If we pick d = p − 1, then for
every M there will be a j ∈ [p] such that M does not contain variables from w(j). Assign all such

monomials to a new polynomial q
(j)
x,r, which is independent of w(j). This allows us to write

qx,r(w
(1), . . . , w(p)) = q(1)

x,r(w
(2), . . . , w(p)) + · · · + q(p)

x,r(w
(1), . . . , w(p−1)).

Note that each q
(j)
x,r has domain of size 2(p−1)rm. The data structure is defined as the concatenation,

for all j ∈ [p], of the values of q
(j)
x,r on all possible inputs. This has length

N = p · 2(p−1)rm = p · 2r(p−1)2n1/(p−1)
.

This length is 2O(rn1/(p−1)) for p = O(1).
Decoding is as follows: the decoder would like to evaluate px,r on some point w ∈ {0, 1}rm. He

picks w(1), . . . , w(p) as above, and for all j ∈ [p], probes the point z(1), . . . , z(j−1), z(j+1), . . . , z(p) in

the jth block of the code. This, if uncorrupted, returns the value of q
(j)
x,r at that point. The decoder

outputs the sum of his p probes (mod 2). If none of the probed bits were corrupted, the output is
px,r(w) Note that the probe within the jth block is uniformly random in that block, so its error
probability is exactly the fraction δj of errors in the jth block. If the overall fraction of errors in
the data structure is at most δ, then we have 1

p

∑p
j=1 δj ≤ δ. Hence by the union bound, the total

error probability is at most
∑p

j=1 δj ≤ pδ.

6If we also want to be able to compute x · y (mod 2) for |y| < r, we can just add a dummy 0 as (n + 1)st variable
to x, and use its index r − |y| times as inputs to px,r.

14

